\[H_{0}: \sigma_{1}^{2} = \sigma_{1}^{2}\]
\[F = \frac{s_{1}^2}{s_{2}^2}\]
На практике в числитель приведенной формулы обычно помещают бóльшую дисперсию, а в знаменатель - меньшую.
F-критерий можно использовать для сравнения и более, чем двух совокупностей (как, например, в дисперсионном анализе). В таких случаях критерий рассчитывается как отношение межгрупповой дисперсии к внутригрупповой дисперсии. Кроме того, F-критерий широко используется при оценке значимости линейной регрессии (подробне см. здесь).
Очевидно, что чем ближе рассчитанное значение F к 1, тем больше у нас оснований сделать заключение о справедливости приведенной выше нулевой гипотезы. И наоборот - чем больше это значение, тем больше имеется оснований отклонить нулевую гипотезу о равенстве дисперсий. Критическое значение F, начиная с которого нулевую гипотезу отклоняют, определятся уровнем значимости (например, α = 0.05) и количеством степеней свободы для каждой из сравниваемых дисперсий. Кроме того, нулевую гипотезу можно проверить при помощи Р-значения для F-критерия, т.е. вероятности того, что случайная величина с соответствующим распределением Фишера окажется равной или превысит рассчитанное по выборочным данным значение F.
Для выполнения теста Фишера в R имеется функция var.test() (от variance - дисперсия, и test - тест). Используем рассмотренный ранее пример о суточном потреблении энергиии у ходощавых женщин (lean) и женщин с избыточным весом (obese):
library(ISwR) data(energy) attach(energy) energy expend stature 1 9.21 obese 2 7.53 lean 3 7.48 lean 4 8.08 lean 5 8.09 lean 6 10.15 lean 7 8.40 lean 8 10.88 lean 9 6.13 lean 10 7.90 lean 11 11.51 obese 12 12.79 obese 13 7.05 lean 14 11.85 obese 15 9.97 obese 16 7.48 lean 17 8.79 obese 18 9.69 obese 19 9.68 obese
Дисперсии в этих двух весовых группах женщин можно легко сравнить следующим образом:
var.test(expend ~ stature) F test to compare two variances data: expend by stature F = 0.7844, num df = 12, denom df = 8, p-value = 0.6797 alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: 0.1867876 2.7547991 sample estimates: ratio of variances 0.784446
Как видим, полученное P-значение значительно превышает 5%-ный уровень значимости, на основании чего мы не можем отклонить нулевую гипотезу о равенстве дисперсий в исследованных совокупностях. Истинное отношение сравниваемых дисперсий с вероятностью 95% находится в интервале от 0.19 до 2.75 (см. 95 percent confidence interval). Исходя из данного результата, мы, например, вправе были бы использовать вариант t-критерия Стьюдента для совокупностей с одинаковыми дисперсиями при сравнении среднего потребления энергии у женщин из рассматриваемых весовых групп (подробнее см. здесь).
При выполнении F-теста и интерпретации получаемых с его помощью результатов важно помнить о следущих ограничениях (Zar 2010):
- Сравниваемые совокупности должны быть нормально распределены;
- Сравниваемые совокупности должны быть независимыми.
Отправить комментарий